A muscle-specific enhancer within intron 1 of the human dystrophin gene is functionally dependent on single MEF-1/E box and MEF-2/AT-rich sequence motifs.

نویسندگان

  • H J Klamut
  • L O Bosnoyan-Collins
  • R G Worton
  • P N Ray
چکیده

In previous studies we have described a 5.0 kb Hin dIII fragment downstream of muscle exon 1 that exhibits properties consistent with a muscle-specific transcriptional enhancer. The goal of this study has been to identify the sequence elements responsible for muscle-specific enhancer activity. Functional studies indicated that this enhancer is active in pre- and post-differentiated H9C2(2-1) myoblasts but functions poorly in L6 and C2C12 myotubes. The core enhancer region was delimited to a 195 bp Spe I- Acc I fragment and sequence analysis identified three MEF-1/E box and two MEF-2/AT-rich motifs as potential muscle-specific regulatory domains. EMSA competition and DNase footprinting indicated that sequences within a 30 bp region containing single adjoining MEF-1/E box and MEF-2/AT-rich motifs are target binding sites for trans -acting factors expressed in H9C2(2-1) myotubes but not in L6 or C2C12 myotubes. Site-specific mutations within these motifs resulted in a significant reduction in enhancer activity in H9C2(2-1) myotubes. These results suggest that the mechanisms governing DMD gene expression in muscle are similar to those identified in other muscle-specific genes. However, the myogenic profile of enhancer activity and trans -acting factor binding suggests a more specialized role for this enhancer that is consistent with its potential involvement in dystrophin gene regulation in cardiac muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products.

The myocyte-specific enhancer-binding factor MEF-2 is a nuclear factor that interacts with a conserved element in the muscle creatine kinase and myosin light-chain 1/3 enhancers (L. A. Gossett, D. J. Kelvin, E. A. Sternberg, and E. N. Olson, Mol. Cell. Biol. 9:5022-5033, 1989). We show in this study that MEF-2 is regulated by the myogenic regulatory factor myogenin and that mitogenic signals bl...

متن کامل

Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D.

The transcriptional integrator p300 regulates gene expression by interaction with sequence-specific DNA-binding proteins and local remodeling of chromatin. p300 is required for cardiac-specific gene transcription, but the molecular basis of this requirement is unknown. Here we report that the MADS (MCM-1, agamous, deficiens, serum response factor) box transcription factor myocyte enhancer facto...

متن کامل

Exercise and myocyte enhancer factor 2 regulation in human skeletal muscle.

Overexpression of GLUT4 in skeletal muscle enhances whole-body insulin action. Exercise increases GLUT4 gene and protein expression, and a binding site for the myocyte enhancer factor 2 (MEF-2) is required on the GLUT4 promoter for this response. However, the molecular mechanisms involved remain elusive. In various cell systems, MEF-2 regulation is a balance between transcriptional repression b...

متن کامل

Differential expression of the myocyte enhancer factor 2 family of transcription factors in development: the cardiac factor BBF-1 is an early marker for cardiogenesis.

In the present study, we have used single chicken blastoderms of defined early developmental stages, beginning with the prestreak stage, stage 1 (V. Hamburger and H. L. Hamilton, J. Morphol. 88:49-92, 1951), to analyze the onset of cardiac myogenesis by monitoring the appearance of selected cardiac muscle tissue-specific gene transcripts and the functional expression of the myocyte enhancer fac...

متن کامل

High affinity binding of MEF-2C correlates with DNA bending.

To regulate lineage-specific gene expression in many cell types, members of the myocyte enhancer factor-2 (MEF-2) family of transcription factors cooperate with basic helix-loop-helix (bHLH) proteins, which show only limited intrinsic DNA binding specificity. We investigated the DNA binding properties of MEF-2C in vitro and show that the inherent bendability of the MEF site is one of the princi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 25 8  شماره 

صفحات  -

تاریخ انتشار 1997